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COMPUTATION OF THE ZEROS OF p-ADIC L-FUNCTIONS 

R. ERNVALL AND T. METSANKYLA 

ABSTRACT. The authors have computed the zeros of the Kubota-Leopoldt p- 
adic L-functions Lp(s, X) for some small odd primes p and for a number of 
Dirichlet characters X . The zeros of the corresponding Iwasawa power series 
f0 (T) are also computed. The characters X (associated with quadratic exten- 
sions of the pth cyclotomic field) are chosen so as to cover as many different 
splitting types of f0(T) as possible. The A-invariant of this power series, equal 
to its number of zeros, assumes values up to 8. 

The article is a report on these computations and their results, including 
the required theoretical background. Much effort is devoted to a study of the 
accuracy of the computed approximations. 

1. INTRODUCTION 

This article is a report on our computations of the zeros of the Kubota- 
Leopoldt p-adic L-functions Lp(s, X), where p is an odd prime and X a 
Dirichlet character. Some theoretical results about the zeros are also established. 

Let fo (T) denote the Iwasawa power series representing Lp (s, X); here 0, 
the so-called first factor of X (for p ), is assumed to be nonprincipal. A major 
part of our work consists in computing the zeros of fo ( T) . These, besides being 
of interest in their own right, have a close relationship to the zeros of Lp (s, X) . 
They are both theoretically and computationally easier to treat than the latter; 
in particular, their number equals A , the A-invariant of the power series. 

Several mathematicians have previously computed zeros of Lp (s, 0) and 
f (T); see [7, 10, 11, 12, 13]. Our computations followed the same main lines 
as those by Wagstaff in [13]. However, apart from a few examples (in [13]), 
all the earlier computations deal with the case As = 1, whereas we let As vary 
from 2 to 6. We also have partial results with A = 7 and 8. The characters 
0 we used in the computations are mainly selected from our recent work [3]. 
They turned out to represent quite a great variety of different cases, as regards 
the splitting type and splitting field of fo ( T). It was our intention to elaborate a 
systematic approach applicable to all of these cases, including a thorough study 
of the accuracy of the computed approximations. 

In the material computed by us there are also many examples leading to zeros 
of Lp(s, X) for characters X $ 0, i.e., for X not of the "first kind". These 
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results, as well as some other results pertaining to more complicated cases, will 
be presented in the forthcoming Part II of the article. 

The computations for the present research were performed by the first author. 
The second author did most of the theoretical work while spending the academic 
year 1988-89 at the Ohio State University in Columbus, Ohio. He would like 
to thank the Department of Mathematics at the OSU for its hospitality and the 
Academy of Finland for financial support. 

2. PRELIMINARIES 

For an odd prime p let us fix an embedding of the field of algebraic numbers 
into Cp, the completion of an algebraic closure of the p-adic field Qp . Let vp 
denote the p-adic exponential valuation on Cp, normalized so that vp(p) = 1 . 

The p-adic L-function Lp (s, X) attached to a Dirichlet character X, always 
assumed primitive, was first introduced by Kubota and Leopoldt in [9]. Recall 
that Lp(s, X) is a meromorphic function on 

D= {s E Cp: vP(s) > -1 + 1 } 

satisfying 

Lp(1 -im, X) = (1- Xm(P)pm-1) L( -m, Xm) (m= 1, 2,...), 

where L(s, X) denotes the Dirichlet L-function and Xm = xw -m, wt being 
the Teichmiiller character mod p. In fact, Lp(s, X) is analytic on Ds, except 
that there is a pole at s = 1 when X = 1. We assume that X is even, i.e., 
X(-1) = 1, since otherwise Lp (s, X) vanishes identically. 

As in the Introduction, let 0 be the first factor of X. Write X = 0 yIn , where 
yIn is of order pn (n > 0). Note that the conductor of 0 is of the form d or 
dp with d prime to p, and the conductor of V/n equals pfn+l (or 1 if n = 0 ). 

Let Ma denote the ring of integers in the extension of Qp generated by all 
the values of 0 . If 0 is nonprincipal, there is a power series 

00 

f0(T) = Za Tj E6 &0[[T]] 
j=0 

such that 

(2.1) Lp(s, X) = f0(Pn(l + dp)s - 1) 

with Pn = y/n (l + dp)-. For 0 = 1, f0(T) is to be replaced by a quotient of 
two power series. 

Assume that 0 $ 1. Viewing fo (T) as a function of T we see that it is 
analytic on the open unit disc 

DT = {T E Cp: vp(T) > 0}. 

By the Ferrero-Washington theorem, vp(aj) vanishes for some j > 0. Thus 
the p-adic Weierstrass preparation theorem enables one to write 

(2.2) f0(T) = u0(T)(bo + b, T + ".+ bA TA-1 + TA)-, 

where u0 (T) is an invertible power series in 9 [[T]], the coefficients bj belong 
to the maximal ideal of Ma, and A = As is the A-invariant of fo (T), 

A= min{j > 0: vp(aj) = 0}. 
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From this it follows that fo (T) has exactly A zeros T1, ..., TA in DT (not 
necessarily distinct). 

If 0 = 1, then 
ge(T) 

1-(1 +p)/(l + T) 

with ge(T) E 61Y[[T]], g0(T) invertible (e.g., [14, p. 125]). This formal identity 
of power series indeed gives an equation in Cp for every T E DT except for 
T = p (corresponding to the pole of Lp(s, 1)). Consequently, fh(T) has no 
zeros for 0 = 1, and also Lp (s, V/n) is nonzero in Ds. 

Henceforth we will exclude the case 0 = 1. 
To determine the zeros of Lp (s, X), we first compute the A zeros of fh (T) . 

Hence, one has to understand the relationship between the zeros of these func- 
tions. This will be discussed in the next section. 

3. RELATIONSHIP BETWEEN THE ZEROS OF Lp AND fo 

The results of this section are partly due to Childress and Gold [2]. Our 
presentation is somewhat different, however. 

By (2.1), the mapping 

(3.1) KX: DS -* DT, Kx(S) = pn( + dp)s1 

sends any zero of Lp(s, X) to a zero of fh(T). To study KX more closely, set 

DO= {T E Cp: vP(T) > 1 

Cn= T E Cp: vp(T) = (p )pn- (n =1, 2,...). 

Proposition 1. Let X = OY/n. If s E Ds, then 

DOfor n=O0, 

{ Cn for n > 1. 
Proof. Introducing the p-adic exponential and logarithm functions, we may 
write 

T = pn (exp(s log(1 + dp)) - 1) + Pn - 1. 

Since 

vp(exp(s log(l + dp)) - 1) = vp(s log(l + dp)) = vp(s) + 1 > 1 

VP (pn-1= plp- (n = 1, 2,**) VP(Pfll( 1)pnl 
and since po = 1, the assertion follows. O 

Let To be a zero of fh ( T) in DT . If there exists a character X = 0 yin and a 
zero s0 of Lp(s, X) such that KX(SO) = To, we say that the zero s0-or, more 
precisely, the pair (V/n, so)-corresponds to To. As observed by Washington 
[15, p. 351], such a pair (YIn, so), if it exists, is unique. Indeed, an equation 
of the form 

Pn, (l + dp)sl = Pn2(1 + dp)S2 
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implies, upon raising to the pfl+f2 th power, that s1 = S2 . Hence, moreover, 
Pni = Pn2 , and so Yin1 = /n2 M 

By Proposition 1, a necessary condition for the existence of a zero so corre- 
sponding to To is that To lies in DO or on one of the Cn . The next proposi- 
tions provide some sufficient conditions. 

Remark. In [2] it is shown that there always exist zeros of more general L- 
functions corresponding to To (in the above sense). These functions, p-adic 
L-functions over totally real fields, are not discussed in the present work. 

Proposition 2. If fh(To) = 0 and TO E DO, then there is a zero so of Lp(s, 0) 
corresponding to To. In fact, 

(3.2) SO -~~~~ log(1 + To)- 
(3.2) 5?= log(1 +dp) 
Proof. Properties of the exp and log function imply that the mapping Kc0: Ds ) 
DO has the inverse 

KO1DT ,, 
l O1()=1g((l + dp)) 

1 

Proposition 3. Let To E Cn be a zero of fo(T). There is a zero so of some 
Lp(s, 0 Vn) corresponding to To if and only if log(1 + To)/ log(1 + dp) E Ds . If 
this is the case, then /n is determined by 

(3.3) Pn= In(l+ dp)-', vp(1 -Pn + TO)> 

and so is given by (3.2). 
Proof. If so corresponds to To, it follows from the equation To = Pn (1 +dp)so - 
1 that so satisfies (3.2). Thus, in particular, log( 1 + TO)/ log( 1 + dp) e Ds. 

Conversely, assume that so = log(1 + To)/ log(1 + dp) E Ds. Then 

log((l + dp)so) = solog(l + dp) = log(l + To), 

and so, since (1 + dp)so and 1 + To are p-adic units, 

(3.4) 1 + To = C(I + dp)so (C a root of 1). 

By writing this in the form 

(3.5) 1 - C + To = C((l + dp)so - 1) 

and by using the fact that To E Cn, we find (cf. the proof of Proposition 1) 
that vp(1 - C) = vp(To) = 1/(p - 1)pn- . Consequently, C is of order pn, 
and we may set C = Pn= yln(l + dp)'- for some character Yln . By (3.4), 
Lp (so, 0 Vyn) = fe (To) = 0. Moreover, by (3.5), 

vp( -Pn + TO) = v((1 + dp)so -1 ) > 1. 

It remains to show that the inequality in (3.3) determines Pn uniquely. Let 
Pn be any root of unity with p-power order such that vp(1 -P p+ To) > 1/(p- 1) . 
Then Vp(Pn - P) > l /(p - 1) . Therefore, Pn = Pn . El 

With the assumption of Proposition 3, when does log(1 + To)/ log(1 + dp) 
lie in Ds ? Some results about this are presented in the following Propositions 
4 and 5. 
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For the rest of this section we suppose that To E C, is a zero of fo (T) and 
so is given by (3.2). Let Cm denote a primitive mth root of 1. 

Proposition 4. If so E Ds, then Cpn E Qp(To). 
Proof. Since Pn is a primitive path root of 1, its conjugates p satisfy VP (P- Pn) 
= vp(1 - p1 Pn) < 1 /(p - 1) whenever P :$ Pn. Hence the inequality in (3.3) 
yields by Krasner's lemma that Pn E Q?,p(1 + To). El 

Proposition 5. (i) Let 0 satisfy Mao = 7p and AO = (p - 1)pn-1. If so E Ds 
then To e Qp(pn)). 

(ii) Conversely, if n = 1 and To E ?p(Cp), then so E Ds. 
Proof. (i) Recall by (2.2) that To is a zero of a polynomial in Zp[T] of degree 
(p - 1 )pn-I . Thus, if so E Ds, it follows from Proposition 4 that Qp (To) = 
2p (Cpn) 

(ii) Suppose that vp(To) = 1/(p - 1) and To E ?p (p) say 

To =- a (mod 712) (a E Z \pZ), 

where 7f = 1 - Cp. We have p = ,ep-1 with a p-adic unit a, 

P -I 1 k P-1 

e = ri cp -- fl k --1 (mod r). 
k=1 k=1 

Consequently, 

log(l + To) _ To +-_ air + =(a - aP)7n = 0 (mod 7r2) 
p le 

and so vp(so) = vp(log(1 + To)) - 1 > 1/(p - 1) - 1. El 

With this in mind, a first interesting open question is whether Proposition 
5(u) can be generalized to n > 1. In the numerical material so far generated 
by us there are only few zeros To lying in some C, for n > 1. These are 
examples with p = 3, n = 2, and the zeros To never belong to Q(49). 

4. PLAN OF THE COMPUTATION 

Tables of zeros of fo(T) and Lp(s, 0) were first published by Iwasawa and 
Sims [7] and by Wagstaff [12] who were concerned with 0 = wt , a power of the 
Teichmuller character mod p, for a number of irregular primes p . Sunseri [ 1 1 ] 
expanded these results by computing considerably more places for the zeros up 
to p < 1000. 

In [13] Wagstaff reported on new computations with 0 = am, the quadratic 
character of the field Q(?/Hib), for several positive primes m -1 (mod 4) and 
for p = 3 and 5. His results were partly extended by Lamprecht and Zimmer 
[10] to p < 13. Also, [15] contains some interesting data about the zeros of 
L3(s, Ofm) 

With a few exceptions in [ 13], all the above results are about the case AO = 1 . 
Hence, for the characters 0 in question, there is always a unique zero To E pZp 
of fo (T) and a zero so of Lp (s, 0) corresponding to To. Moreover, in all cases 
one has vp(To) = 1 and, thus, vp(so) = 0. 
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In the present work we are concerned with (even) characters 

0=6m"Wt (ptm, O<t<p-2) 

for p = 3, 5, 7, and 11, allowing both positive and negative values, not neces- 
sarily prime, for m. For characters of this form, values of Ao were computed 
in [3]. We selected examples with Ao > 1 , trying to find as many different types 
of cases as possible. The computation procedure was organized to follow the 
same main lines as that in [13]. Thus, there were the following four principal 
steps: 

(1) computing Lp(s, 0) as a power series in s from Washington's formula 
(see (5.1) below), 

(2) converting this function by (2.1) into the power series fo (T), 
(3) computing the zeros of fh(T) by Newton's tangent method, and 
(4) converting these zeros to the zeros of Lp(s, 6OV/n) according to Proposi- 

tions 2 and 3. 
Note that f( T) is not canonically defined. Following Washington, we adopt 

definition (2.1) which is quite natural, while [13] and [10] define 

Lp(s, 0) = -fo(( +p)-S - 1). 

The p-adic values of the coefficients and of the zeros of fo (T) of course 
remain invariant. 

We performed several additional computations to check the results at each 
step. For example, when there were zeros so of Lp(s, 6OV/n) with V/1n $ 1 
(which in fact happened for p = 3 and n = 1 only), we also computed this 
L-function to verify the vanishing of Lp(so, 6 YIn). 

To come up with a representative sample of examples, we divided the com- 
puting process into two parts. First, in Program A, all characters 0 with Ao > 1 
from our earlier work [3] were run through the steps (1) and (2). Here, the power 
series were computed just to a few places of the very first coefficients. In most 
cases this was sufficient to determine the p-adic values of the zeros of fo (T); 
if it was not, the computations were repeated with a greater number of places. 

In Program B, we performed the entire procedure (1)-(4) for characters cho- 
sen on the basis of Program A. Some examples were also taken from Kobayashi 
[8]. The number of computed places varied case by case depending on the type 
of the example. We point out that step (1) takes much more time to execute 
than the other steps, and the time grows rapidly when the number of places is 
increased. 

Program B contains cases with Ao up to 6. From Program A we also have 
some results about a few cases in which A, = 7 or 8. 

The main part of the computations was carried out in 1988-89 on an IBM 
3033 computer at the University of Turku. 

A detailed description of the computation procedure appears in the following 
sections. In ?? 5-9 problems that arose at each step are studied from a theoretical 
point of view, while ? 11 in the Supplements section at the end of this issue 
gives more information about the actual computations. Results are presented 
in ? 10. Finally, ? 12 of the Supplements section is devoted to the proofs of some 
propositions of a more technical nature. 
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Henceforth in this paper, we let 0 denote a nonprincipal character of the 
form Omtw. 

5. COMPUTING A p-ADIC L-FUNCTION 

Washington's formula [14, p. 57] reads 

( 5. 1 ) Lp (s X) = 1 Z (Qw Ad X (a) (a) -s (1 ) Bj (-) 
pta 

where D is any common multiple of p and the conductor of X; the notation 
(a) stands for am I (a), and Bj denotes the jth Bernoulli number (with B1 = 
-1/2 ). When using this formula for the computation of Lp (s, 0), the optimal 
choice of D is 

D = dp with d = conductor of 6,m (either Iml or 4lm I). 
As in [13], expand the right-hand side of (5.1) in a power series of s by 

writing 

v=O 

and expanding the binomial coefficients in powers of s. This will be discussed 
more closely in ? 11 of the Supplements section. As a result, one obtains 

00 

(5.2) Lp (s, 6) = ZUisi 
i=O 

with coefficients ui in Qp . It follows from [14, Theorem 5.12] (see also Propo- 
sition 6 below) that in fact ui E Zp . 

By the computation of Lp (s, 6) we mean the calculation of rational integers 
Yi such that 

(5.3) Ui i (mod pM) for i = O .. ., iM, 

where M is a suitably chosen integer and iM satisfies 

(5.4) iM > M- 1, ui = 0 (mod pM) for all i > iM. 

To obtain a value for iM, we need a lower bound for vp(ui). The following 
estimate is sharper and more convenient than those given in [13] and [10]. 
Proposition 6. We have 

vu>_- 1 (i = 1, 2, 

Proof. The idea is to compare the expansion in (5.2) with that deriving from 
(2.1). First observe that 

00 

(1 + dp)s - 1 = exp(s log(1 + dp)) - 1 = Zdisi 
1=1 

with di = (log(1 + dp))i/i!. We have 

(5.5) vp(di) = i - vp(i!) > iP- i. 
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Hence, 

vp(dsi) > vp(dj) +i (-1+- ) >0? 

for all s E Ds, and so a general principle (e.g., [1, p. 284]) allows us to write 
the composite function 

00 /0o0 \ 

fo((I +dp)s_1)= Zaj Tdisi) 
1=0 i= I 

formally as a power series in s. Compared to (5.2), this implies that uo = ao 
and 

ui = ajdij with dij= E dt, dt (i = 1, 2, ..). 
j=1 tl+---+t,=i 

Since vp(aj) > 0, we have to check that vp(dij) > i - (i - 1)/(p - 1) for 
j = 1, ... , i. In view of (5.5) this is indeed the case. E 

Remark. An analogous result for the coefficients in the expansion of Lp (s, 6 l/n,) 
will be proved in Part II. 

6. COMPUTING THE IWASAWA POWER SERIES 

If T E DOT, then log(1 + T)/log(1 + dp) E D, and we have, by (2.1), 

(6.1) fo(T) = Lp (log(, +-dp)' ,) 

We now obtain the coefficients of the power series fo (T) = ZJ% aj T' from 
this formula by using our expansion (5.2) for Lp (s, 6) . Write 

(6.2) log(+T) = 1 ejT with ei - log(l + dp) log( + dp) p j=l j o(1d) 

and note that vp (p - I ej Tj) > - I + 1/ (p - 1) for all j > 1 , provided vp (T) > 
vo, where vo is a suitable constant, vo > 1/(p - 1). Consequently, by the 
substitution principle employed in the proof of Proposition 6, we find that 

(log( l + dp) = (E i E ej TJ)= ajT 

say, where a' = uO and 
j 

(6.3) aj = Y 5p'-i 5 et1 et, (j=1,2,...). 
i= l tl+- -+tl=j 

Comparison with (6. 1) now yields (and here the restriction vp ( T) > vo becomes 
superfluous) 

a}=a' (j=0,1,...). 

As mentioned in ?2, the aj are p-adic integers. Our computation of f6(T) 
consists of the calculation of rational integers -d approximating aj for j = 
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0, ... , M - 1. We do this by using (6.3), where ui is replaced by its approxi- 
mation Y4 mod pM as described in ?5, and similarly ej by an approximation ej 
mod pm. Note that, in contrast to ui, the numbers ej do not tend (p-adically) 
to zero; in fact, ej is generally not even a p-adic integer. By the congruence 
e,-e j (mod pM) we mean that vp (ej - jj) > M. 

For the approximations -aj obtained in this way we may formulate the fol- 
lowing result. The proof is postponed to ? 12 (see Supplements section). 

Proposition 7. We have aj _=1 (mod pMi) for I = 0, ... , M - 1. 

7. COMPUTING ZEROS OF A POWER SERIES 

Let 
00 

f(T) = ZcjTj E 6&F[[T]], 
1=o 

where 6'F is the integer ring of F, a finite extension of Qp (all extensions of 
Qp are considered in Cp ). We will study the problem of computing zeros of 
f( T), viewed as a function of T on DT . This is then applied to the case when 
f( T) is either fo ( T) or the quotient of fo (T) by some of its linear factors. 

Suppose we know that there is a simple zero To E DT in an extension E of 
F. Then To E 7rYE, where 7f is a prime element of 6ME. We let v, denote the 
valuation on Cp to the base 7a, that is, v, = evp, where e is the ramification 
index of E/Qp. Note that v,(f'(To)) is a nonnegative integer (f' stands for 
the derivative of f ). 

Once a sufficiently good initial approximation for To is known, one can 
compute To to any desired accuracy by using Newton's tangent method. This 
is based on the following result. 

Proposition 8 (Newton algorithm). Let to E 7V&E satisfy f(to) _ 0 (mod 712y+l), 

where y = v,(f'(to)). Then there exists a unique TO E 7V&E such that 

f (To) =0, To= to (mod 7y+'). 

In fact, To = limn To tn, where tn is defined by 

t= t f (t I) (n =1, 2,.* ). 

Proof. For the uniqueness which is crucial in the present work, one can give 
the following simple proof (omitted in several standard references). 

Write f(T) = (T - To)g(T) with g(T) E Cp [[T]]. Since g(To) = ft(To), 
we have y = v,(g(To)) = v,(g(to)). Thus, if Uo is any zero congruent 
to to (mod 7ry+l), we see that v,(g(U0)) = y and so g(Uo) $ 0. But 
(Uo- To)g(Uo) = f(Uo) = 0, hence U0 = To. 

From the well-known existence proof we just quote the following formulas, 
valid for all n > 1: 

(7.1) tn tn- 1 (mod 7y+n), 

(7.2) f(tn) 0 ? (mod 7r2Y+n+1 

(7.3) v (f(tn)) = v (f'(To)) = Y U 
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As regards the accuracy of the approximation tn, (7.1) shows that 

(7.4) tn (mod 7ry+f+1). 
In our real situation, the power series f (T) is given approximately, in fact, 

as a polynomial. However, its zeros To are approximately the same as the 
zeros of this polynomial because TO( > 0 as j -- oc. We formulate this in a 
quantitative form. 

Let y and t, (n > 0) be as in Proposition 8. Fix N E Z so that N > y. 
There is a polynomial 

N' 

(7.5) 7(T) = ZEj Tj E 6F[T] 
j=o 

with the following properties: 

(i) v, (f'(to)) = y, f(to) 0 (mod 7r2y+1); 
(ii) if o, 1 l, ... is the sequence obtained for f(T) by the Newton al- 

gorithm, with the initial approximation to = to and each tn computed mod 
7,y+n+l , then the zero To = limnDO tn of f(T) satisfies 

(7.6) To _ tN-y (mod ,TN+1). 

In fact, such a polynomial f( T) is given by the following proposition, which 
will be proved in ? 12 of the Supplements section. 

Proposition 9. Choose w E Z so that 1 < w < y + 1 and to 0 0 (mod iW). 
Let N' = [(N + y)/w], where [x] denotes the largest integer < x, and assume 
that jj E 6F satisfies 

(7.7) cj =-- c (modr zN+y+ I-wj) (j = ?, N'). 

Then the polynomial f(T) defined in (7.5) has the properties (i) and (ii). 

8. COMPUTING ZEROS OF fo ANDLp 

Now consider the Iwasawa power series fe(T) = ZEI0 ajTj E Zp[[T]]. In 
view of Proposition 7, we will assume that the aj are approximated by aij E Z, 
so that aj _ a j (mod pM-j) . Set 

M-1 

7M(T)= E ajT'. 
1=o 

Let To be a simple zero of fo (T) . As in the previous section, let E denote 
an extension of Qp containing To; also keep the notations ir and e associated 
with E. 

Proposition 10. Suppose that to E 7TC6'E (c > 1) satisfies 

To_ to (mod 7ry+l), fo(to) 0 (mod 7r2y+1) 

where y = v (f6 (to)) . The Newton algorithm applied to f7(T), with to as the 
initial approximation, produces a zero To satisfying 

(8.1) T0-To (mod rPM-Y) 
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with p = min(e, c), provided that p < y + I and pM > 2y + 1. 
Proof. Apply Proposition 9 with N = pM - y - 1 and w = p, observing that 
aj = aj (mod ,PM-Pj). The claimed congruence follows from (7.6). El 

Remarks. The last two inequalities in Proposition 10 are fulfilled whenever c 
and M are chosen appropriately. Hence, there remains the question how to find 
a field E containing a zero To and how to determine an initial approximation 
to. This will be discussed in the next section. 

Once one zero To of fo (T) has been computed, it may be better to deal with 
fo(T)/( T - To) when calculating further zeros. This is the case, in particular, 
if To = 0, but sometimes also for other To E ?p . The above congruences are 
then to be modified slightly. 

Our final task is to determine the zeros s0 of Lp (s, 0 yin) which correspond 
to each To lying in DO or on some C, (n > 1) . By Propositions 2 and 3, and 
by (6.2), s0 is obtained from 

log('1?To) _ 10 
SO = g(1+d-7 E e To 

log~l dp) pj=1 

in the case To E C, one moreover has to check that so E Ds. Note that the 
field E containing To also contains s0. 

For the computation in practice, let e, be defined by ej =_ F (mod pM), as 
in ?6, and set 

=1 (8.2) o= -e zJ 
where To is given by Proposition 10. 

Proposition 11. If J is large enough and pM > y + e, then 

SO=so (mod nPM-y-e) 

The proof, which also implies an estimate for J, appears in ? 12 of the 
Supplements section. 

9. STARTING THE NEWTON ALGORITHM 

We are left with the question of how to start the Newton algorithm leading 
to an approximation of a zero To of fo (T) . 

Suppose that vp(To) is known. In fact, we assume that we know the Newton 
polygon of fo(T), that is, the p-adic values of sufficiently many of its first 
coefficients ao, a,, ... (these values were computed in Program A). 

More precisely, we are going to find the (minimal) extension E of Q?p con- 
taining To and to determine to E 7r6E so that f6(to) 0_ (mod 7r2y+1), where 
y = vX(f'(to)) = vs(f'(To)). Then, by PropQsition 8, to works as an initial 
approximation in the computation of To. In particular, To _ to (mod 7ry+'), 
so that one can proceed in the way described in ?8 (Proposition 10). 

The above conditions for to include the implicit assumption that the zero 
To be simple. This was satisfied in all examples computed by us. We point out 
that Ferrero and Greenberg [4] have proved that so = 0 is at most a simple 
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zero of Lp (s, x) . From this it follows that To = 0 never occurs as a multiple 
zero of fo( T) . Whether the same holds true for nonzero To is not known. 

In the following, we set 
00 

aj = akpk with 0 < aik < p (U = 0, 1,...) 
k=O 

and restrict ourselves to two basic types of Newton polygon met in the compu- 
tations. Our discussion not only covers the majority of all examples but also 
presents the essential features of the required techniques in most, though not 
all, of the remaining cases. The treatment of these will be completed in Part II. 

The first type consists of polygons determined by the conditions vp (ao) = 1, 
A prime to p. Hence, there is but one (finite) nonzero slope, and this equals 
-1 /i,. For any zero To one has vp (To) = 1A/, so that E/Qp is fully ramified 
of degree iA. Set q = (R, p - 1). Since the ramification is tame, we know (e.g., 
[5, Ch. II, ? 16]) that E is one of the q (nonconjugate) fields 

Qp (7r), 7rA = rp with r = gb (modp), 0 < b < q -1, 

where g is a fixed primitive root of p. We also have 

Y = vr(f'(To)) = v, (AaA TOA) = A - 1. 

To determine to, assume that A > 1, the case A = 1 being trivial (to = 0) . 
Write 

To =_x7r (mod 7r2), 0 <x <p. 
By Krasner's lemma, this fixes E = Q?p(To) uniquely (up to conjugates), since 
Vp (7r - a 7r) = 1A/ whenever aA = 1 . Let us make this result explicit as follows. 
From f6(To) 0 (mod ir1+ ) we have that aoI + atorxA - 0 (mod p), or 

rx_ -aol /awo (mod p). 
This yields a unique solution for r mod p, and q solutions for xl mod p, 
corresponding to q zeros To E E (note that there are A/q extensions conjugate 
to E). 

If A > 2, we go on by setting 

To=_ XI7r + -+ XA_7rA-1 (mod 7rA). 
Observe that 

= + c7iril + ... + cA-27r2A-2 (mod 7r2A-1), 

where the coefficients cj are of the form Axh-1xj+l plus terms depending only 
on xI, ..., Xj. The congruence fo(To) 0_ (mod 7r2y+1) is easily seen to be 
equivalent to 

A1 + A27r + + A>227r>-3 0_ (mod 7r>-2) 

with each Aj = Aj(xI, ... , xi+I) E Z, hence equivalent to A1 I AA>-2 0 
(mod p). Since 

Aj _ Aa~orx 1 x1+l + A9(xl , .. ., Xj) (mod p), 
where A' does not depend on xj+ I, we find that xj+I mod p becomes uniquely 
determined once xI is fixed (j = 1, ...A,) - 2). As final result we get that 
to = XI 7r + . + xAI 7rA- satisfies the desired conditions. 
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The second type we consider is the case in which vp(ao) = 2 and A = 2. 
Then, for both zeros To = To and To", say, vp(To) = 1, and so E is one of 
the fields Qp , ?P ( Vg), ?p (X), ?p (+/Xp) . In any case, we may write 

To _xp (modp31/2) with = u+vf/gO0, 

where 0 < u < p, 0 < v < p . Now the congruence f6(TO) 0_ (modp5/2) 
becomes 

aO2+allx+a20x2 = 0 (mod p), 

and this gives us two different solutions x E Z or x e 7ZL/g] according to 
whether the discriminant D = aj~1 - 4a02a20 is a quadratic residue or nonresidue 
mod p, respectively, and a double root x E Z if D 0 0 (mod p). 

In the former case (D 0 0) we have by Krasner's lemma E = Q(p for x E Z, 
while E = Qp(p+/) for x e Z[/g] - Moreover, since a, 1 + 2a20X o 0 (mod p), 
we see that y = vp(f'(To)) = 1. In this case, fo(xp) 0_ (mod p3), which 
shows that to = xp works as an initial approximation. 

Suppose that D- 0 (mod p); then vp(To - To") > 3/2. We will postpone 
the cases with vp (To - To") > 2 to Part II and let here this distance be 3/2 . This 
means that the zeros are of the form To _ xp + yp+j3 (mod p2), where r = 1 
or g and 0 < x < p, 0 < y < p. In particular, E = Qp(7r) with 7r = +/A. 
Using the congruence a 1I + 2a20X 0 (mod p), we find that 

fo6(To) +2a2Oyp7r (mod 7r4), 

and so y = 3. Hence, to obtain r and to we must consider the congruence 
fo(To) 0_ (mod ir7). This is equivalent to 

a20ry -b2 - a3 - aI2x - a21X - a30X3 (mod p), 

where b _ (a02 +aI x +a20x2)/p (mod p) . Upon solving for r and y, we are 
done: take to = xp + yp7r . 

10. NUMERICAL RESULTS 

A table including the main results from Program A appears in the Supple- 
ments section of this issue. This table gives a first approximation for fo(T), 
where 0 runs through all the characters treated in this program (about 1150 in 
number). 

A sample of the results from Program B is exhibited in Tables I-V of the 
Supplements. The present section contains a description of these tables together 
with some further examples. 

Each item in the tables is headed by a triple (p, A, t) identifying the char- 
acter 0 = 0mcot. Here, A denotes the discriminant of Q(fih), hence A = m 
or 4m and JAI equals d, the conductor of 0m . 

Of the two columns below the triple, the first (left) lists the first coefficients 
of Lp(s, 0) = 1Z?o uisi and the second (right) those of fo(T) = E0 0ajTj . 
For example, the first item of Table I (with p = 3 and 0 = 0-470) )gives the 
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following data about the coefficients: 

uO=0 ao=0 
ul = 0.0020... a, = 0.0100 
U2= 0.0120*.. a2 = 1.1222... 
U3= 0.0012*.. a3 = 1.002*.. 
U4= 0.0010** a4= 2.00. 
u5= 0.0000*.. a5 = 1.1 
u6= 0.0001* a6=(1.)... 

All the nonzero p-adic numbers are written in the "decimal" form: 
b 

E = V=X-aX-a+1 XO.X1X2 Xb (O < XV <p, a > 0, b > 0). 
v=-a 

For p = l Ithe digit xl, = 10 is denoted by a. 
The coefficient columns are followed by the pairs Tk, Sk, for k = 1, ... , 

where Tk is a zero of fo(T) and Sk = log(1 + Tk)/log(1 + dp) . Observe that 
Vp (Sk) = Vp (Tk) - 1 if Tk 5 0 and vp (Tk) > l/ (p - 1) . When Sk is not a 
zero of Lp(s, 0), it is denoted by sk; this occurs only in Tables IV and V. In 
case Tk generates a proper extension E of Qp , it is preceded by a "standard" 
generator of E. If E/Qp is ramified, this generator, a prime element of BE, 
is denoted by 7r (or 7r', 7rk ), otherwise by 4. 

Each nonzero value of ui, a1, Tk, Sk is an approximation. When we write 
0 for a value of these numbers, it is exact. The approximations are truncated, 
according to the above propositions, to contain only correct digits. To save 
space, we in many cases list the coefficients ui and aj with an accuracy that 
is lower than actually computed. However, when tabulating ui, we follow the 
principle that all the coefficients which are nonzero to the displayed accuracy 
are included (cf. (5.3) and (5.4)). Thus, in the above example, 

ui = 0.0000... for all i > 7. 

We now comment on the tables separately and offer some additional exam- 
ples. 

Table I provides examples in which A = 2 and ao = 0. This is an easy case: 
apart from the trivial zero T1 = 0, fo (T) has a unique zero T2 E Qp and this 
can be computed by replacing fo (T) with fo (T)/ T and choosing 0 as an initial 
approximation. In the examples of this type, it is not rare that vp ( T2) > 1 , while 
the previously known examples (with A = 1) always are about zeros with p- 
ordinal 1. The maximum values we found for vp (T2) occurred in the following 
cases: 

EXAMPLE 1. 

(3,-971, 1): T1=0, sI=0, 
T2 = 0.000011, s2 = 0.00021. 

EXAMPLE 2. 

(3,-2351, 1): TI = 0, s= 0, 
T2= 0.0000021, s2= 0.000012. 

In Table II we have - = 2 and ao 54 0. Here we give only examples with 
Vp(Tk) = 1/2 or 1; the cases with higher vp (Tk) will be discussed in Part II. 
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Note that if p = 3 and v3(Tk) = 1/2, Sk is not a zero of L3(s, 0). These 
cases are postponed to Part II as well. 

The next example, being of the type of Table II, corrects some erroneous data 
in [13]. 

EXAMPLE 3. 

(5, 109, 0): T1,2= 0.4122 + 2.1134V2i5, 

SI ,2 = 0.0322 + 33.21 IV77. 

(With the definition of fo(T) used in [13] one has T1, 2 = 0-4434+ 
2.3244V'7. ) 

The examples in Table Ila, with A = 3 and ao = 0, are analogous to those in 
Table II: exclude the trivial zero T1 = 0 and consider the power series fo ( T)/ T. 

Table III is about the case A = 3, ao 54 0. Except for one example, the zeros 
lie in ramified cubic extensions. The number of such extensions (not counting 
conjugates) is one for p = 5, and three for p = 7. For p = 3, the ramification 
is wild. This case will be studied in Part II, but below we give just one example 
completing a discussion begun in [13]. 

EXAMPLE 4. 

(3, 281, 0): 7rk zero of X3-6X-3 (k= 1, 2, 3), 

Tk~7k+3 (mod 7r5), Tk 7Ck + 7rk (md7k) 
no zero Sk corresponding to Tk. 

The next example, still about p = 3, falls into the same category (Ai = 3, 
ao 54 0 ) but is of another kind: fo (T) has a linear factor. This example was 
also computed in [13] (with some errors in the last digits). 

EXAMPLE 5. 

(3, 733, 0): T, = 0.12001, s1 = 1. 1220, 

7r = A/=3 , 

T2,3= 0.20120+ 1.120007r, 

52 3= 1.2022+2.10107r 

(s* and s* are zeros of L3(s, O yI); see Part II). 
Table Illa is again a companion to the preceding table, with A = 4 and 

ao = 0. 
Table IV lists examples in the case A = 4, ao $ 0. In all examples, vp (Tk) = 

1/4. Thus, we know about Sk that it is a zero of Lp (s, 0) for p = 7 but no 
zero of any Lp(s, 0y',n) for p = 3. For p = 5, the answer depends on Q55(7r); 
in our examples Q55(7r) never happens to be Q5(-V/E) = Q?5(C5), and so there 
is no Sk corresponding to Tk (see Proposition 5). 

Finally, Table V contains three examples with A = 5 and one with A = 6. 
(In the last case, A was not computed in [3].) Again, most of the zeros Tk lie 
in quartic extensions, and the Sk obtained from these are no zeros of Lp (s, 0)), 
not even zeros of Lp(s, Oyi,). 

The previously computed tables [3, 8] list 12 further examples with A > 6. 
We computed vp(Tk) for all zeros Tk in these examples. There are three cases 
(with p = 3 ) in which some of the zeros lie in wildly ramified sextic extensions, 
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and we will return to them in Part II. In the remaining cases one can determine 
the extension E = Qp (7r), up to conjugates, from vp (Tk); they are as follows: 

p t A ir Remarks 

3 -239, -4088, -1427,-17252, -36140 1 6 Y3T = 0 

3 -21592 1 7 3o 
3 -11156,-30584 1 8 t3 T= 0 

7 -1371 1 7 1/7 T1 = 0, T2 C Q7 

On the basis of the numerical data computed so far it seems natural to expect 
that the zeros Tj and si are distributed randomly as regards their p-adic value 
(within the prescribed limits) and their inclusion in various extensions of Qp . 
Also the p-adic expansions of the zeros fail to show any regularity. 
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